Matemática

Inicio General Geometría del triángulo

Geometría del triángulo

Publicado por Laura

Vamos a estudiar los elementos característicos de un triángulo: las rectas notables y los puntos que determinan:

– Se llama altura de un lado de un triángulo a la recta que une cada vértice con el lado opuesto de forma perpendicular. Las tres alturas de un triángulo se cortan en un punto denominado ortocentro.
Propiedad 1:

La altura de un triángulo puede ser tanto interior al triángulo, como se puede apreciar en la imagen; exterior al triángulo; o incluso que coincida con alguno de sus lados. La situación de la altura depende del tipo de triángulo que sea:
a) Si se trata de un triángulo rectángulo, dos de sus alturas coinciden con los catetos, mientras que la altura respecto sobre la hipotenusa es interior.
b) En el caso de los triángulos acutángulos las tres alturas son interiores.
c) Por último, si el triángulo es obtusángulo, la altura correspondiente al lado mayor es interior; en cambio, las otras dos son exteriores.
Propiedad 2: En los triángulos isósceles, la altura sobre el lado desigual divide al triángulo en dos triángulos rectángulos iguales.

ortocentro

– Se llama mediatriz de un lado de un triángulo a la recta que perpendicular a ese lado que pasa por su el punto medio de dicho segmento. El punto donde se cortan las tres mediatrices se denomina circuncentro. Este punto es el centro de la circunferencia circunscrita al triángulo.
mediatriz
Propiedad: Los puntos de la mediatriz de un lado se encuentran a la misma distancia de los vértices de dicho lado.

– Se llama mediana de un triángulo a cada una de las rectas que une cada vértice con el punto medio del lado opuesto. El punto donde se unen todos las medianas se denomina baricentro.
medinaas
Propiedad 1: Las medianas de un triángulo son siempre interiores sin tener en cuenta el tipo de triángulo que se trata.
Propiedad 2: Cada una de las medianas del triángulo divide al triángulos en dos triángulos de igual área.

– Se llama bisectriz de un ángulo de un triángulo, a la recta que divide dicho ángulo en dos ángulos iguales. Las bisectrices de un triángulo tienen un punto en común que se denomina incentro. Este punto es el centro de la circunferencia inscrita en el triángulo como podemos apreciar en la siguiente imagen:
bisectriz
Propiedad 1: Los puntos de la bisectriz se encuentran a la misma distancia de los lados que forman el ángulo. O lo que es lo mismo, que si trazamos rectas perpendiculares desde un punto a ambos lados del triángulo, los segmentos tienen la misma longitud.
Propiedad 2: En el caso del triángulo isósceles, la bisectriz del ángulo determinada por los lados iguales, coincide con la altura, la mediana y la mediatriz del vértice que determina el lado opuesto.

RECTA DE EULER
La recta de la que forman parte el ortocentro, el circuncentro y el baricentro se denomina la recta de Euler, ya que fue el famoso matemático Leonhard Euler quien la descubrió a mediados del siglo XVII.
220px-Recta_de_Euler.svg

Categorías: General